

Fixed Displacement Motor A4FM

for open and closed circuits

Sizes 22...500
Series 1, Series 3
Nominal pressure up to 400 bar
Peak pressure up to 450 bar

Index

- Features
- Ordering Code
- Technical Data
- Installation and Commissioning Guidelines
- Flow and Output Torque
- Unit Dimensions, Sizes 22, 28
- Unit Dimensions, Size 40
- Unit Dimensions, Size 56
- Unit Dimensions, Size 71
- Unit Dimensions, Size 125
- Unit Dimensions, Size 250

Features

- 1 – Axial Piston Fixed Displacement Motor A4FM of swashplate design is used in open and closed loop circuits for hydrostatic drives.
- 2 – Output speed is proportional to input flow and inversely proportional to motor displacement.
- 3...5 – Output torque increases with the pressure drop across the motor between the high and low pressure sides.
- 6 – Long service life, optimum efficiencies
- 7 – Compact design for special applications where A2FM cannot be applied
- 8 – Proven rotary group in swashplate-technology

Ordering Code

	A4F	M	/	W	–			
--	------------	----------	----------	----------	---	--	--	--

Hydraulic fluid

Mineral oil, HFD (no code)	
HFA, HFB, HFC-Hydraulic fluid (only sizes 71...500)	E-

Axial piston unit

Swashplate design, fixed displacement	A4F
---------------------------------------	------------

Mode of operation

Motor	M
-------	----------

Size

≤ Displacement V_g (cm ³)	22	28	40	56	71	125	250	500
	●	●	●	●	●	●	●	○

Series

Sizes 22...56, 125...500	3
Size 71	1

Index

Sizes 22...56	2
Sizes 71...500	0

Direction of rotation

Viewed on shaft end	alternating	W
---------------------	-------------	----------

Seals

NBR (Nitril-caoutchouc), shaft sealing in FKM (Fluor-caoutchouc)	Sizes 22...56	N
	Sizes 71...500	P
FKM (Fluor-caoutchouc)	Sizes 71...500	V

Shaft end

	22	28	40	56	71	125	250	500	
Splined shaft SAE	○	○	–	–	–	–	–	–	S
Splined shaft SAE	●	●	–	–	–	–	–	–	T
Splined shaft DIN 5480	–	–	●	●	●	●	●	○	Z
Parallel with key DIN 6885	–	–	–	–	●	●	●	○	P

Mounting flange

	22	28	40	56	71	125	250	500	
SAE 2-hole	●	●	●	●	–	–	–	–	C
ISO 4-hole	–	–	–	–	●	●	●	–	B
ISO 8-hole	–	–	–	–	–	–	–	○	H

Service line connections

Ports A, B: SAE at rear (with metric fixing screws)	–	●	●	01
Ports A, B: SAE at side (on opposite sides) (with metric fixing screws)	●	–	●	02

● = available

○ = available on enquiry

– = not available

Technical Data

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistance fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

The sizes 22..56 are not suitable for operation with HFA, HFB and HFC.

Operation viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

$$v_{\text{opt}} = \text{operating viscosity } 16 \dots 36 \text{ mm}^2/\text{s}$$

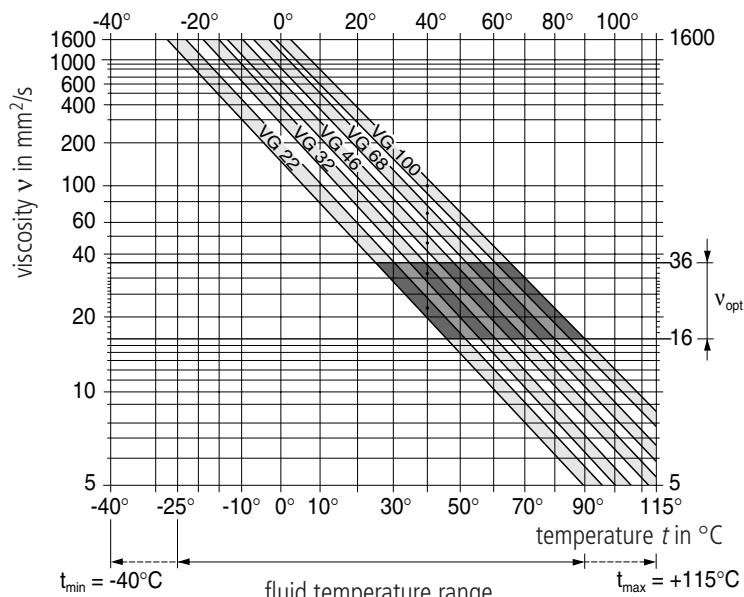
referred to the loop temperature (closed circuit) or tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

Size 22...56

$v_{\text{min}} = 5 \text{ mm}^2/\text{s}$, short term at a max. permissible temp. of $t_{\text{max}} = 115^\circ\text{C}$
 $v_{\text{max}} = 1600 \text{ mm}^2/\text{s}$, short term on cold start ($t_{\text{min}} = -40^\circ\text{C}$)


Size 71...500

$v_{\text{min}} = 10 \text{ mm}^2/\text{s}$, short term at a max. permissible drain temp. $t_{\text{max}} = 90^\circ\text{C}$
 $v_{\text{max}} = 1000 \text{ mm}^2/\text{s}$, short term on cold start ($t_{\text{min}} = -25^\circ\text{C}$)

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

At temperature of -25°C up to -40°C special measures may be required for certain installation positions, please contact us.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the loop (closed circuit) or the tank temperature (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (v_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of $X^\circ\text{C}$ the operating temperature is 60°C . Within the operating viscosity range (v_{opt} ; shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and motor speed and is always higher than the circuit temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 22...56 or 90°C for sizes 71...500.

If it is not possible to comply with the above condition because of extreme operating parameters or high ambient temperatures we recommend housing flushing. Please consult us.

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum purity grade of:

9 to NAS 1638

18/15 to ISO/DIS 4406 is necessary.

At very high temperatures of the hydraulic fluid (90°C to max. 115°C , not permissible for sizes 71...500) at least cleanless class

8 to NAS 1638

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Technical Data

valid for operation with mineral oils

Flushing of the bearings (Sizes 125...500)

operating conditions, flushing quantities and notes on bearing flushing
see RE 92 050 (A4VSO).

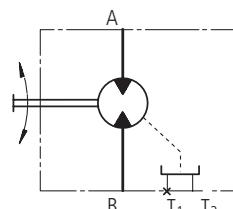
Operating pressure range

Maximum pressure at port A or B (Pressure data to DIN 24312)

Size	22...56	71...500
Nominal pressure p_N bar	400 ¹⁾	350
Peak pressure p_{max} bar	450 ¹⁾	400

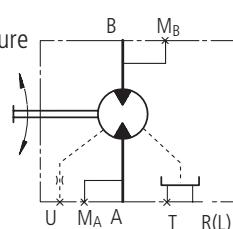
¹⁾ Size 28 with S-shaft: 315/350 bar

The sum of the pressures at ports A and B may not exceed 700 bar.


Direction of flow

clockwise rotation	anti-clockwise rotation
A to B	B to A

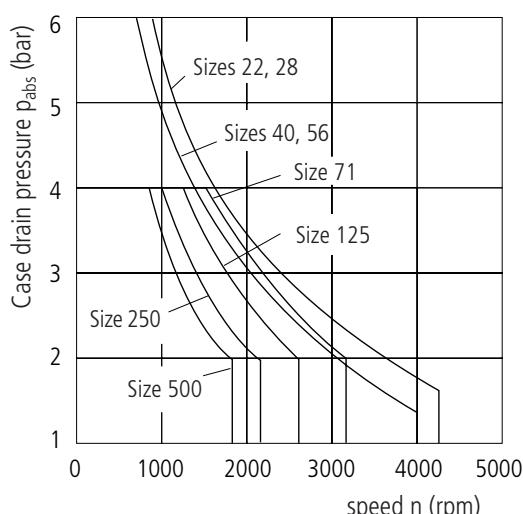
Symbol


Size 22...56

A, B Service line ports
T₁, T₂ Case drain
(1 port plugged)

Size 71...500

A, B Service line ports
M_A, M_B Pressure gauge, working pressure
T, R(L) Case drain, Air bleed
(1 port plugged)
U Flushing port
(Sizes 71...500)


Case drain pressure

The max. permissible leakage pressure (housing pressure) is dependent on speed (see diagram). The pressure in the housing must be equal to or greater than the external pressure on the shaft sealing ring.

Max. leakage pressure (housing pressure)

$p_{abs. max.}$ _____ 6 bar (sizes 22...56)
_____ 4 bar (sizes 71...500)

A leakage line to the tank is necessary.

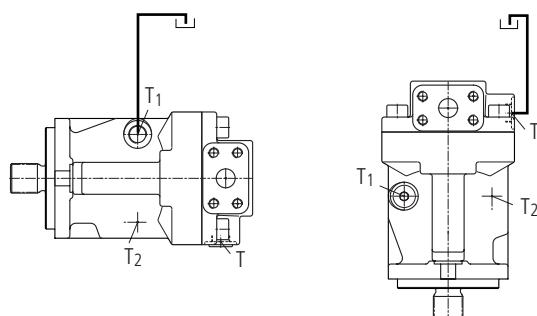
Installation and Commissioning Guidelines

General

At start-up and during operation the motor housing has imperatively to be filled up with hydraulic fluid (filling of the case chamber). Start-up has to be carried out at low speed and without load till the system is completely bled.

At a longer standstill the case may discharge via operating line. At new start-up a sufficient filling of the housing has to be granted.

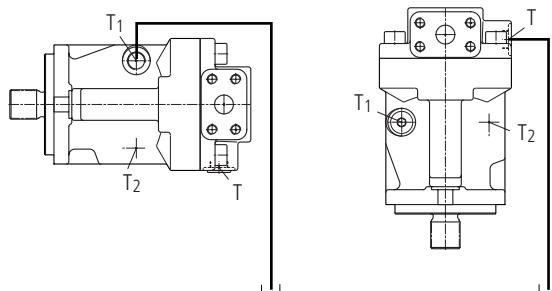
The leakage oil in the housing has to be discharged to the tank via highest positioned case drain port.


Installation position

- Sizes 22...56: Shaft horizontal or shaft down
- Sizes 71 (series1): Shaft horizontal, vertical installation position as to agreement
- Sizes 125...500: Optional, at vertical installation position bearing flushing is recommended at port U (as to RD 9205)

Installation below tank level

Motor below min. oil level in the tank (standard)


- Fill up axial piston motor before start-up via highest positioned case drain port
- Operate motor at low speed till motor system is completely filled up
- Minimum immersing depth of the drain line in the tank: 200mm (relative to the min. oil level in the tank).

Installation on top of tank level

Motor on top of min. oil level in the tank

- Actions as installation below tank level
- Note: installation position "drive shaft up" for sizes 22...56 not permissible

Technical Data

valid for operation with mineral oil

Table of values (theoretical values, without considering η_{mh} and η_v ; values rounded)

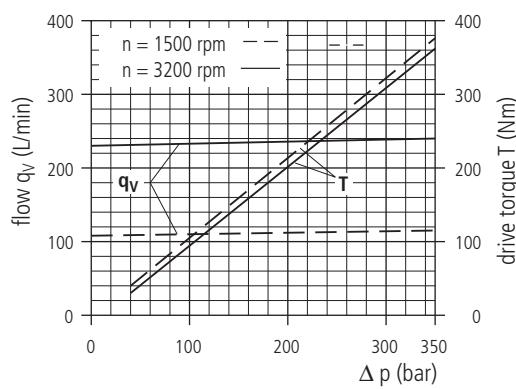
Size		22	28	40	56	71	125	250	500	
Displacement	V_g	cm ³	22	28	40	56	71	125	250	500
Max. speed	$n_{max\ continuous}$	rpm	4250	4250	4000	3600	3200	2600	2200	1800
	$n_{max\ interm.}^1)$	rpm	5000	5000	5000	4500	—	—	—	—
Max. flow (at n_{max})	q_{Vmax}	L/min	93	119	160	202	227	325	550	900
Torque constants	T_k	Nm/bar	0,35	0,445	0,64	0,89	1,13	1,99	3,97	7,95
Torque (at $\Delta p = 400$ bar)	T_{max}	Nm	140	178	255	356	395 ²⁾	696 ²⁾	1391 ²⁾	2783 ²⁾
Filling volume		L	0,3	0,3	0,4	0,5	2,0	3,0	7,0	11,0
Moment of inertia about drive axis	J	kgm ²	0,0015	0,0015	0,0043	0,0085	0,0121	0,0300	0,0959	0,3325
Actual starting torque at $n = 0$ rpm ($\Delta p = 350$ bar)		Nm (approx.)					320	564	1127	
Weight (approx.)	m	kg	11	11	15	21	34	61	120	

¹⁾ Intermittent max. speed at overspeed: $\Delta p = 70 \dots 150$ bar²⁾ $\Delta p = 350$ bar

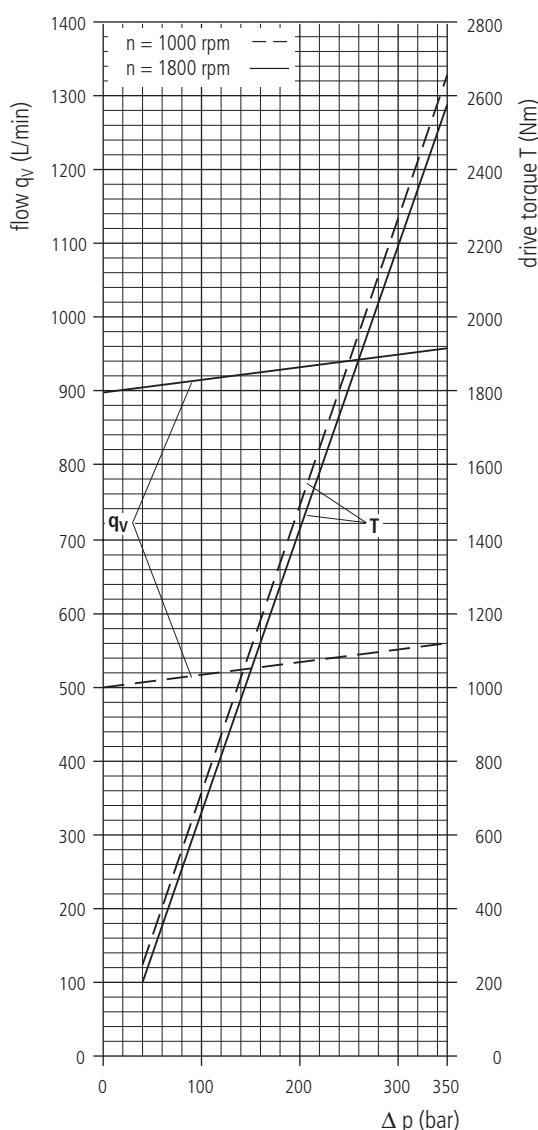
Calculation of size

Flow	$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$	in L/min	V_g = geometric displacement per rev. in cm ³
Output speed	$n = \frac{q_v \cdot 1000 \cdot \eta_v}{V_g}$		Δp = pressure differential in bar
Output torque	$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$	in Nm	n = speed in rpm
	$= T_k \cdot \Delta p \cdot \eta_{mh}$		η_v = volumetric efficiency
Output power	$P = \frac{T \cdot n}{9549} = \frac{2 \pi \cdot T \cdot n}{60000}$	in kW	η_{mh} = mech.-hyd. efficiency
	$= \frac{q_v \cdot \Delta p \cdot \eta_t}{600}$		η_t = overall efficiency

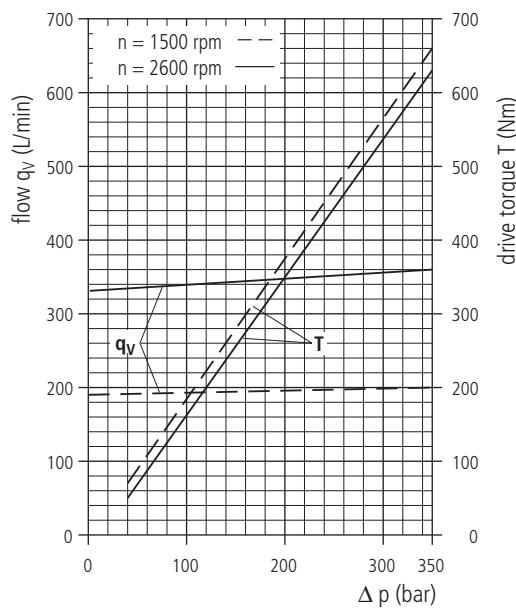
Output drive

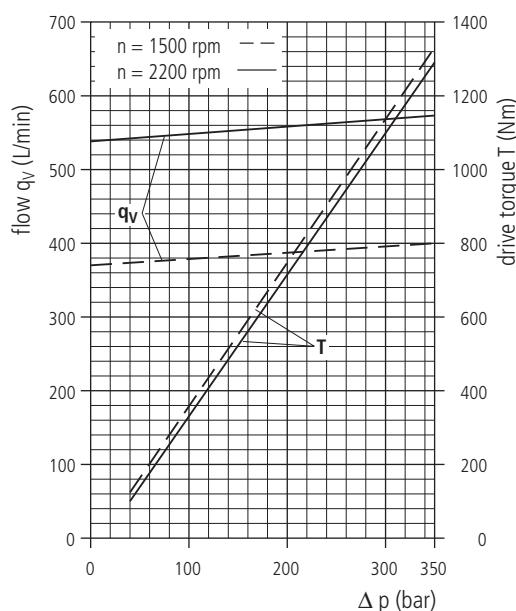

permissible axial and radial loading on drive shaft

Size		22	28	40	56	
Distance of F_q (from shaft shoulder)		a mm b mm c mm	17,5 30 42,5	17,5 30 42,5	17,5 30 42,5	
Max. permissible radial force at distance	a	$F_{q\ max}$ N	2500	2050	3600	5000
	b	$F_{q\ max}$ N	1400	1150	2890	4046
	c	$F_{q\ max}$ N	1000	830	2416	3398
Max. permissible axial load		$-F_{ax\ max}$ N $+F_{ax\ max}$ N	1557 417	1557 417	2120 880	2910 1490


Size		71	125	250	500	
Max. axial force at housing pressure p_{max} 1 bar abs.		$\pm F_{ax\ max}$ N	1400	1900	3000	4000
Max. axial force at housing pressure p_{max} 4 bar abs.		$\pm F_{ax\ max}$ N $+F_{ax\ max}$ N $-F_{ax\ max}$ N	810	1050	1850	2500
Max. radial force		$F_{q\ max}$ N	1700	2500	4000	5000

Flow and Drive Torque


Size 71


Size 500

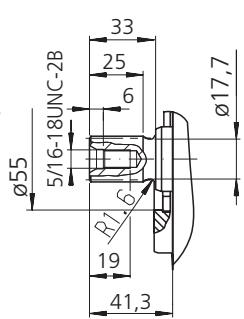
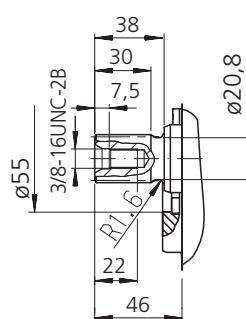
Size 125

Size 250

(Fluid: Hydraulic oil ISO VG 46 DIN 51519, $t = 50^\circ\text{C}$)

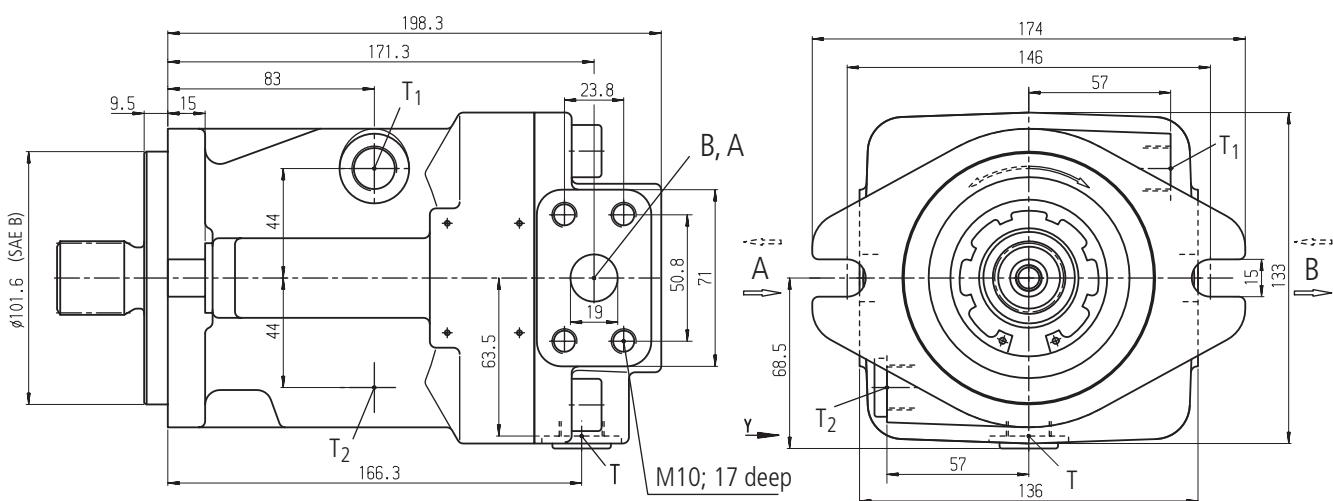
Unit Dimensions, Size 22, 28

Before finalising your design, please request a certified drawing.



Connections

A, B Service line ports

SAE $1\frac{1}{2}$ " 420 bar
(6000 psi) high pressure seriesT₁, T₂ Leakage port / oil filling port


M18x1.5; 12 deep

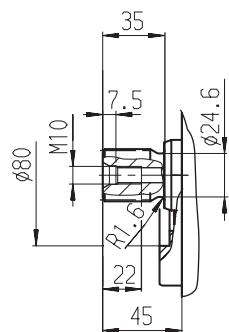
Shaft ends

SSplined shaft SAE $7/8$ ",
30° pressure angle,
13 teeth, 16/32 pitch,
flat root, side fit,
tolerance class 5
ANSI B92.1a-1976**T**Splined shaft SAE 1"
30° pressure angle,
15 teeth, 16/32 pitch,
flat root, side fit,
tolerance class 5
ANSI B92.1a-1976

Unit Dimensions, Size 40

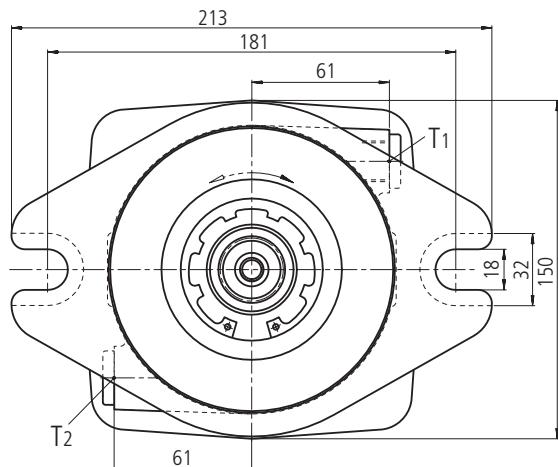
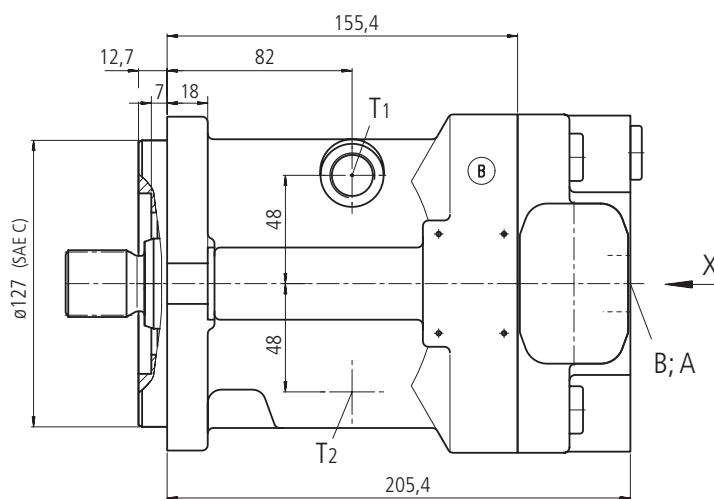
Before finalising your design, please request a certified drawing.

Connections


A, B Service line ports

SAE $\frac{3}{4}$ " 420 bar
(6000 psi) high pressure serieT, T₁, T₂ Leakage port / oil filling port

M18x1.5; 15 deep

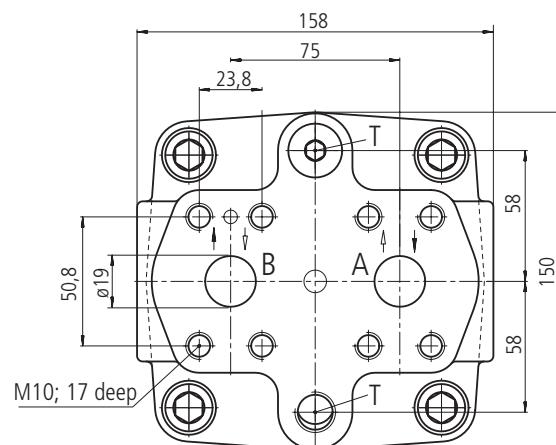


Shaft ends

Z

Splined shaft
W 30x2x30x14x9g
DIN 5480

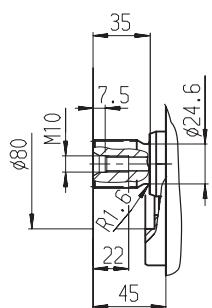
Unit Dimensions, Size 56

Before finalising your design, please request a certified drawing.

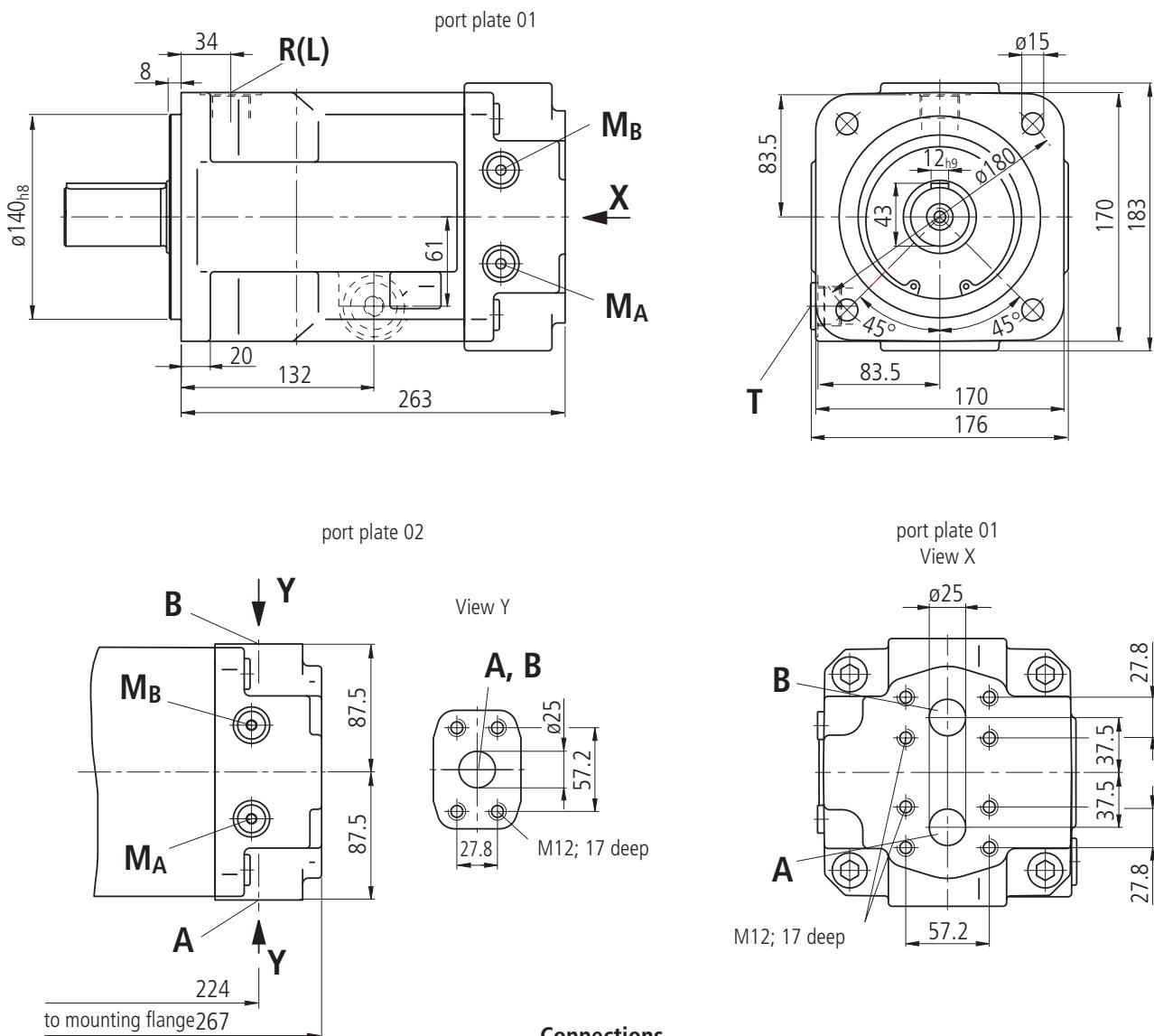

Connections

A, B Service line ports

SAE $\frac{3}{4}$ " 420 bar
(6000 psi) high pressure serieT, T₁, T₂ Leakage port / oil filling port


M 18x1,5 ; 12 deep

View X


Shaft ends

Z

Splined shaft
W 30x2x30x14x9g
DIN 5480

Unit Dimensions, Size 71

Before finalising your design, please request a certified drawing.

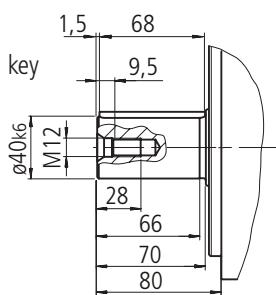
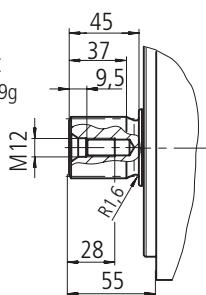
Connections

A, B service line ports

SAE 1"
(high pressure series)

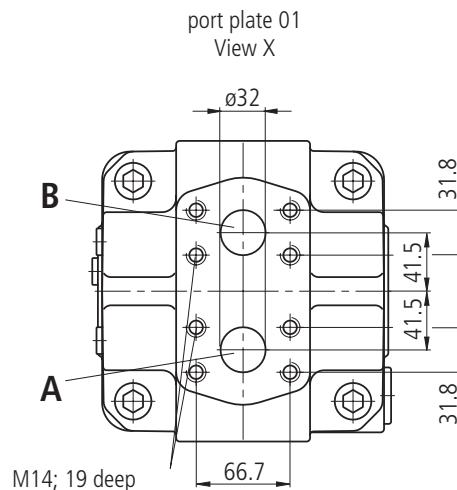
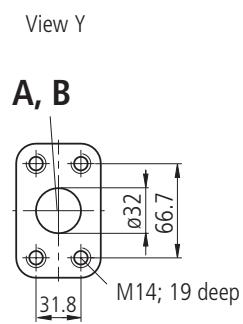
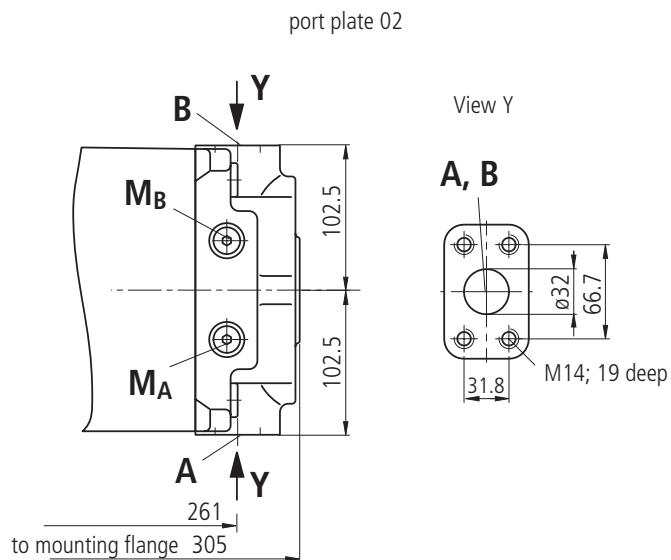
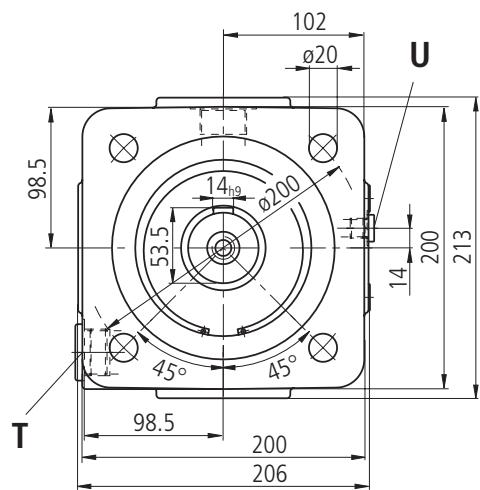
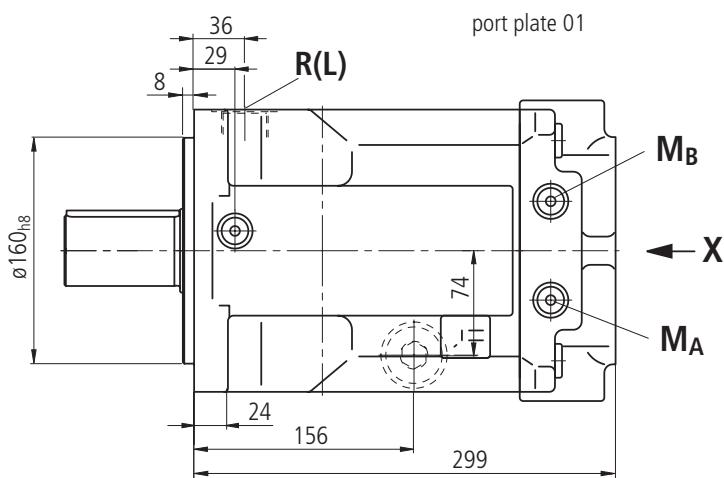
R (L) oil filling and bleed

M27x2



T oil drain (plugged)

M27x2

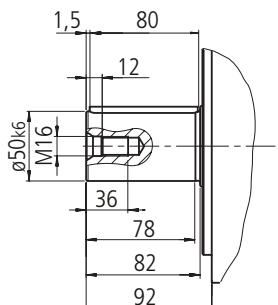
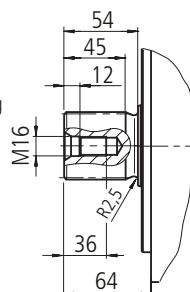
M_A, M_B measuring port for pressure (plugged)






M14x1,5

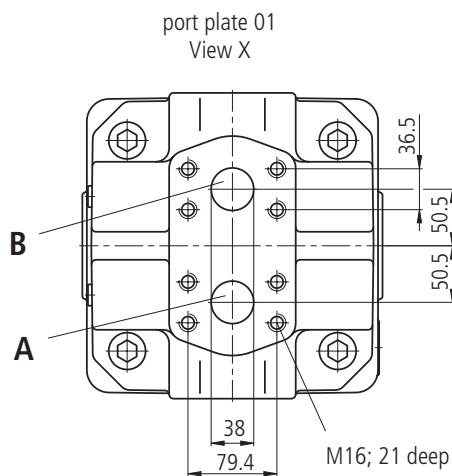
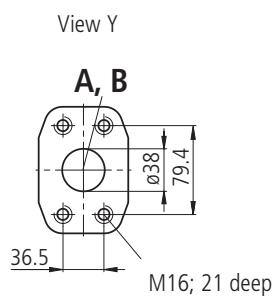
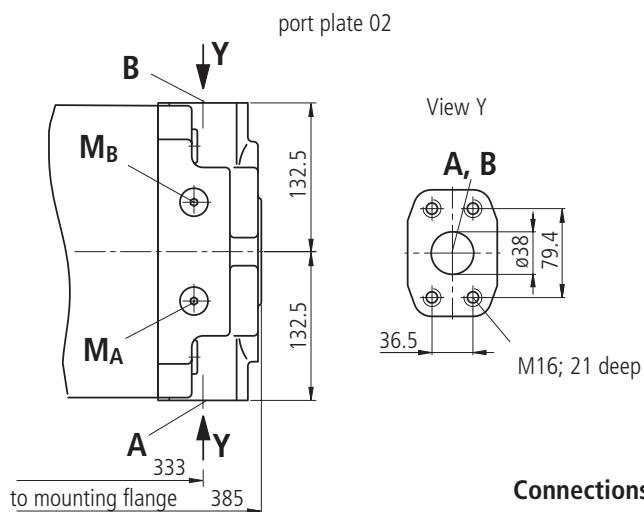
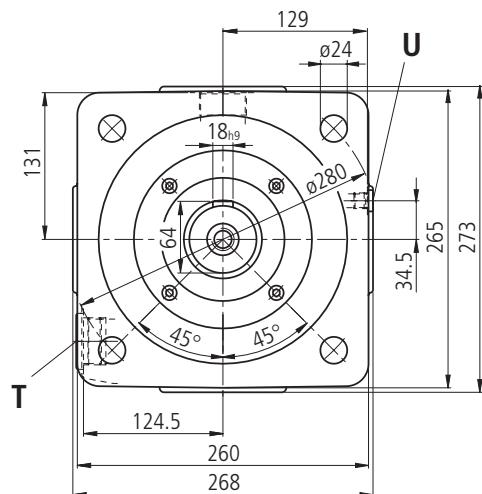
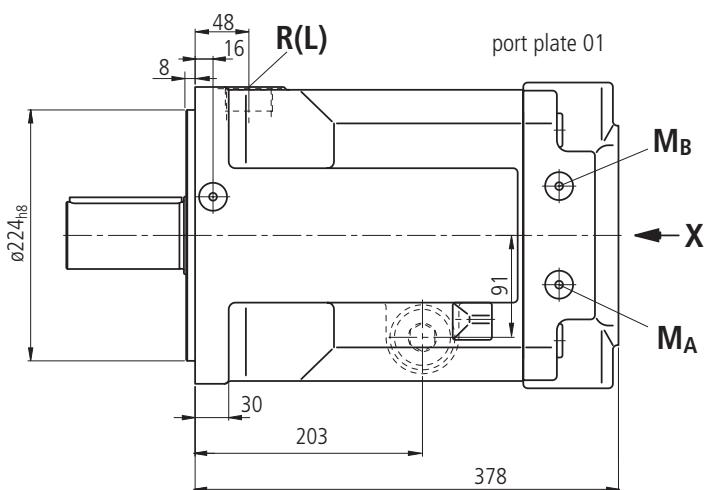
Shaft end

PParallel shaft with key
AS 12x8x68
DIN 6885**Z**Splined shaft
W40x2x30x18x9g
DIN 5480

Unit Dimensions, Size 125



Before finalising your design, please request a certified drawing.

Connections






A, B	service line ports	SAE 1 1/4" (high pressure series)
R (L)	oil filling and bleed	M33x2
T	oil drain (plugged)	M33x2
M _A , M _B	measuring port for pressure (plugged)	M14x1,5
U	Flushing port, flushing of the bearings (plugged)	M14x1,5

Shaft end

PParallel shaft with key
14x9x80
DIN 6885**Z**Splined shaft
W50x2x30x24x9g
DIN 5480

Unit Dimensions, Size 250

Before finalising your design, please request a certified drawing.

Connections

A, B service line ports

SAE 1 $\frac{1}{2}$ "
(high pressure series)

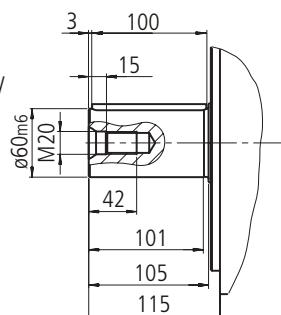
R (L) oil filling and bleed

M42x2

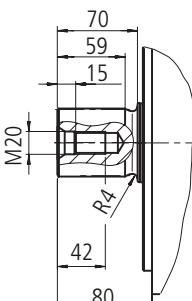
T oil drain (plugged)

M42x2

 M_A, M_B measuring port for pressure (plugged)


M14x1,5

U Flushing port,
flushing of the bearings (plugged)


M14x1,5

Shaft end

P

Parallel shaft with key
AS 18x11x100
DIN 6885

Z

Splined shaft
W60x2x30x28x9g
DIN 5480